skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Keller, Timothy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract As science and technology rapidly progress, it becomes increasingly important to understand how individuals comprehend expository technical texts that explain these advances. This study examined differences in individual readers’ technical comprehension performance and differences among texts, using functional brain imaging to measure regional brain activity while students read passages on technical topics and then took a comprehension test. Better comprehension of the technical passages was related to higher activation in regions of the left inferior frontal gyrus, left superior parietal lobe, bilateral dorsolateral prefrontal cortex, and bilateral hippocampus. These areas are associated with the construction of a mental model of the passage and with the integration of new and prior knowledge in memory. Poorer comprehension of the passages was related to greater activation of the ventromedial prefrontal cortex and the precuneus, areas involved in autobiographical and episodic memory retrieval. More comprehensible passages elicited more brain activation associated with establishing links among different types of information in the text and activation associated with establishing conceptual coherence within the text representation. These findings converge with previous behavioral research in their implications for teaching technical learners to become better comprehenders and for improving the structure of instructional texts, to facilitate scientific and technological comprehension. 
    more » « less
  2. null (Ed.)
  3. Autism spectrum disorder (ASD) is currently viewed as a disorder of cortical systems connectivity, with a heavy emphasis being on the structural integrity of white matter tracts. However, the majority of the literature to date has focused on children with ASD. Understanding the integrity of white matter tracts in adults may help reveal the nature of ASD pathology in adulthood and the potential contributors to cognitive impairment. This study examined white matter water diffusion using diffusion tensor imaging in relation to neuropsychological measures of cognition in a sample of 45 adults with ASD compared to 20 age, gender, and full‐scale‐IQ‐matched healthy volunteers. Tract‐based spatial statistics were used to assess differences in diffusion along white matter tracts between groups using permutation testing. The following neuropsychological measures of cognition were assessed: processing speed, attention vigilance, working memory, verbal learning, visual learning, reasoning and problem solving, and social cognition. Results indicated that fractional anisotropy (FA) was significantly reduced in adults with ASD in the anterior thalamic radiation (P= 0.022) and the right cingulum (P= 0.008). All neuropsychological measures were worse in the ASD group, but none of the measures significantly correlated with reduced FA in either tract in the adults with ASD or in the healthy volunteers. Together, this indicates that the tracts that are the most impacted in autism may not be (at least directly) responsible for the behavioral deficits in ASD.Autism Res2020, 13: 702–714. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. Lay SummaryWhite matter tracts are the data cables in the brain that efficiently transfer information, and damage to these tracts could be the cause for the abnormal behaviors that are associated with autism. We found that two long‐range tracts (the anterior thalamic radiation and the cingulum) were both impaired in autism but were not directly related to the impairments in behavior. This suggests that the abnormal tracts and behavior are the effects of another underlying mechanism. 
    more » « less